RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)		
FIRST YEAR [BATCH 2016-19] B.A./B.Sc. SECOND SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017		
Date : 18/03/2017 Time : 12 noon – 1 p	m Paper : II	Full Marks : 25
Answer <u>any one</u> question from <u>Question nos. 1 & 2</u> : [1×5]		
such that	riginal axes OX and OY be rotated through an angle θ in the anticlockwise OX' and OY' are the new set of axes. If (x, y) and (x', y') be the coordinate the referred to OX, OY and OX', OY' respectively. Then what is the relation (x', y') ?	es of the
	at $a+b$, $ab-h^2$, f^2+g^2 obtained from $ax^2+2hxy+by^2+2gx+2fy+c$ under transformation of rotation.	remains [1+2+1]
	e through which the axes are to be rotated so that the equation $x\sqrt{3} + y + 6 = 6$ form x = c. Also determine the value of c.	0 may be [5]
Answer <u>any one</u> question from <u>Question nos. 3 & 4</u> :		[1×6]
b) Find the e	vector equation of a line passing through two given points. equation to the line passing through the point $(7, -3, 4)$ and parallel to the vecto and determine the point where it cuts the plane through the three points $(2, 1, -3, (3, 0, 1))$.	
	internal bisector of any angle of a triangle divides the opposite side internal les containing the angle.	lly in the [6]
Answer any one question from Question nos. 5 & 6 :		[1×7]
5. a) Evaluate	$: \lim_{n \to \infty} \left(\sqrt[3]{n+1} - \sqrt[3]{n} \right)$	[3]
b) Check if t	the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.	[4]
6. a) Let $\{x_n\}$ a	and $\{y_n\}$ be real sequence such that $x_n \rightarrow 1$ and $y_n \rightarrow 2$. Show that $(x_n + y_n) - 2$	→3. [3]
b) Show that	t a convergent real sequence is bounded.	[4]
Answer <u>any one</u> question from <u>Question nos. 7 & 8</u> : [1>		
	$: \lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \dots \left(1 + \frac{n}{n}\right) \right\}^{\frac{1}{n}}.$	[3]
b) By Wallis	s' method, calculate $\int_{a}^{b} \frac{1}{x} dx, 0 < a < b$.	[4]

8. a) If
$$I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$
 where n is a positive integer greater than 1, show that $I_n = \frac{n-1}{n} I_{n-2}$. Hence
find $\int_0^1 x^2 \sqrt{1-x^2} \, dx$. [4]
b) Evaluate : $\int \frac{dx}{5+4\sin x}$. [3]